Computer graphics III Path tracing

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Tracing paths from the camera

```
renderImage()
{
    for all pixels
    {
        Color pixelColor = (0,0,0);
        for k = 1 to N
        {
        \omega
        pixelColor += getLi(camPos, }\mp@subsup{\omega}{\textrm{k}}{}\mathrm{ )
        }
        pixelColor /= N;
        writePixel(pixelColor);
    }
}

\section*{Path tracing, v. zero (recursive form)}
getLi ( \(\mathrm{x}, \boldsymbol{\omega}\) ):
\(\mathbf{y}=\operatorname{traceRay}(\mathbf{x}, \omega)\)
return
\[
\begin{array}{ll}
\operatorname{Le}(\mathbf{y},-\omega)+ & / / \text { emitted radiance } \\
\operatorname{Lr}(\mathbf{y},-\omega) & / / \text { reflected radiance }
\end{array}
\]
\(\mathbf{L r}(\mathbf{x}, \boldsymbol{\omega})\) :
\(\omega^{\prime}=\) genUniformHemisphereRandomDir( \(\mathbf{n}(\mathbf{x})\) )
return \(2 \pi^{*} \operatorname{brdf}\left(\mathrm{x}, \omega, \omega^{\prime}\right) * \operatorname{dot}\left(\mathbf{n}(\mathbf{x}), \omega^{\prime}\right) * \operatorname{getLi}\left(\mathrm{x}, \omega^{\prime}\right)\)

\section*{Path Tracing - Loop version}
```

getLi(x, w)
{
Color thrput = (1,1,1)
Color accum = (0,0,0)
while(1)
{
hit = NearestIntersect(x, w)
if no intersection
return accum + thrput * bgRadiance(x, w)
if isOnLightSource(hit)
accum += thrput * Le(hit.pos, -w)
\rho = reflectance(hit.pos, -w)
if rand() < \rho // russian roulette - survive (reflect)
wi := SampleDir(hit)
thrput *= fr(hit.pos, wi, -w) * dot(hit.n, wi) / (p * pdf(wi))
x := hit.pos
w := wi
else // absorb
break;
}
return accum;
}

Terminating paths - Russian roulette

```
getLi(x, w)
{
    Color thrput = (1,1,1)
    Color accum = (0,0,0)
    while(1)
    {
        hit = NearestIntersect(x, w)
        if no intersection
        return accum + thrput * bgRadiance(x, w)
        if isOnLightSource(hit)
            accum += thrput * Le(hit.pos, -w)
        \rho = reflectance (hit.pos, -w)
        if rand() < \rho /// russian roulette - survive (reflect)
            wi := SampleDir(hit)
            thrput *= fr(hit.pos, wi, -w) * dot(hit.n, wi) / (\rho* pdf(wi))
            x := hit.pos
            w := wi
        else // absorb
            break;
    }
    return accum;
}

\section*{Terminating paths - Russian roulette}
- Continue the path with probability \(q\)
- Multiply weight (throughput) of surviving paths by 1 / \(q\)
\[
Z=\left\{\begin{array}{cc}
Y / q & \text { if } \xi<q \\
0 & \text { otherwise }
\end{array}\right.
\]
- RR is unbiased!
\[
E[Z]=\frac{E[Y]}{q} \cdot q+0 \cdot \frac{1}{q-1}=E[Y]
\]

\section*{Survival probability}
- It makes sense to use the surface reflectivity \(\rho\) as the survival probability
- If the surface reflects only \(30 \%\) of energy, we continue with the probability of \(30 \%\). That's in line with what happens in reality.
- What if we cannot calculate \(\rho\) ? Then there's a convenient alternative:
1. First sample a random direction \(\omega_{\mathrm{i}}\) according to \(p\left(\omega_{\mathrm{i}}\right)\)
2. Use the sampled \(\omega_{\mathrm{i}}\) it to calculate the survival probability as
\[
q_{\text {survival }}=\min \left\{1, \frac{f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cos \theta_{\mathrm{i}}}{p\left(\omega_{\mathrm{i}}\right)}\right\}
\]

\section*{Direction sampling}
```

getLi(x, w)
{
Color thrput = (1,1,1)
Color accum = (0,0,0)
while(1)
{
hit = NearestIntersect(x, w)
if no intersection
return accum + thrput * bgRadiance(x, w)
if isOnLightSource(hit)
accum += thrput * Le(hit.pos, -w)
\rho = reflectance(hit.pos, -w)
if rand() < / / russian roulette - survive (reflect)
wi := SampleDir(hit)
thrput *= fr(hit.pos, wi, -w) * dot(hit.n, wi) / (p * pdf(wi)
x := hit.pos
w := wi
else // absorb
break;
}
return accum;
}

Direction sampling

- We usually sample the direction ω_{i} from a pdf similar to

$$
f_{r}\left(\omega_{\mathrm{i}}, \omega_{0}\right) \cos \theta_{\mathrm{i}}
$$

- Ideally, we would want to sample proportionally to the integrand itself

$$
L_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) f_{r}\left(\omega_{\mathrm{i}}, \omega_{0}\right) \cos \theta_{\mathrm{i}},
$$

but this is difficult, because we do not know L_{i} upfront. With some precomputation, it is possible to use a rough estimate of L_{i} for sampling [Jensen 95, Vorba et al. 2014], cf. "guiding".

No incoming radiance information [Vorba et al. 2014]

"Guiding" by incoming radiance [Vorba et al. 2014]

BRDF importance sampling

- Let's see what happens when the pdf is exactly proportional to $f_{r}\left(\omega_{\mathrm{i}}, \omega_{0}\right) \cos \theta_{\mathrm{i}}$?

$$
p\left(\omega_{\mathrm{i}}\right) \propto f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}}
$$

- Normalization (recall that a pdf must integrate to 1)

$$
p\left(\omega_{\mathrm{i}}\right)=\frac{f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}}}{\int_{H(\mathbf{x})} f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}} \mathrm{~d} \omega_{\mathrm{i}}}
$$

The normalization factor is nothing but the reflectance ρ

BRDF IS in a path tracer

- Throughput update for a general pdf

```
thrput *= fr(.) * dot(.) / ( p * p(wi) )
```

- A pdf that is exactly proportional to BRDF * cos keeps the throughput constant because the different terms cancel out!

$$
p\left(\omega_{\mathrm{i}}\right)=f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{i} / \rho
$$

$$
\text { thrput *= } 1
$$

- Physicists and nuclear engineers call this the "analog" simulation, because this is how real particles behave.

Direct illumination calculation in a path tracer

Direct illumination: Two strategies

- At each path vertex \mathbf{x}, we are calculating direct illumination
- i.e. radiance reflected from a point \mathbf{x} on a surface exclusively due to the light coming directly from the sources
- Two sampling strategies

1. BRDF-proportional sampling
2. Light source area sampling

Image: Alexander Wilkie

Direct illumination: Two strategies

BRDF proportional sampling

Light source area sampling

Direct illumination calculation using MIS

Sampling technique (pdf) p_{1} : Sampling technique (pdf) \mathbf{p}_{2} : BRDF sampling Light source area sampling

Combination

Arithmetic average
Preserves bad properties of both techniques

MIS weight calculation

Sample weight for
BRDF sampling

PDFs

- BRDF sampling: $\mathbf{p}_{\mathbf{1}}(\omega)$
- Depends on the BRDF, e.g. for a Lambertian BRDF:

$$
p_{1}(\omega)=\frac{\cos \theta_{\mathrm{x}}}{\pi}
$$

- Light source area sampling: $\mathbf{p}_{\mathbf{2}}(\omega)$

$$
p_{2}(\omega)=\frac{1}{|A|} \frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{\cos \theta_{\mathbf{y}}}
$$

Conversion of the uniform pdf $1 /|\mathrm{A}|$ from the area measure (dA) to the solid angle measure (d ω)

Where is the conversion factor coming from?

- Pdfs (unlike ordinary function) change under a change of coordinates. In general, it must always hold:

$$
p(\omega) d \omega=p(\mathbf{y}) d A
$$

- And so

$$
p(\omega)=p(\mathbf{y}) \frac{d A}{\frac{d \omega}{\checkmark}} \underbrace{}_{\text {conversion factor }}
$$

The use of MIS in a path tracer

- For each path vertex:
- Generate an explicit shadow ray for the techniques p_{2} (light source area sampling)
- Secondary ray for technique p_{1} (BRDF sampling)
- One ray can be shared for the calculation of both direct and indirect illumination
- But the MIS weight is - of curse - applied only on the direct term (indirect illumination is added unweighted because there is no second technique to calculate it)

Dealing with multiple light sources

- Option 1:
- Loop over all sources and send a shadow ray to each one
- Option 2:
- Choose one source at random (with prob proportional to power)
- Sample illumination only on the chosen light, divide the result by the prob of picking that light
- (Scales better with many sources but has higher variance per path)
- Beware: The probability of choosing a light influences the sampling pds and therefore also the MIS weights.

